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An outbreak of an infectious disease becomes an epidemic when the asso-

ciated mortality exceeds an epidemic threshold. It is often possible though to

detect an epidemic trend earlier and to predict an epidemic. Such a trend is

marked by a rapidly increasing number of deaths, diagnosed patients, or sold

medicines. Substantial prior information for the beginning of such an epidemic

trend is usually available, and thus, its detection can be stated as a Bayes se-

quential change-point detection problem.

The exact Bayes solution involves rather complicated computation of the

payoff function that is feasible only for relatively simple prior distributions or

by means of an extensive Monte Carlo study. Instead, we propose asymptoti-

cally pointwise optimal (APO) stopping rules for change-point detection whose

computation is straightforward even under complicated prior distributions that

arise in epidemiology.

Recent results on APO rules for change-point detection are extended to

discrete-time stochastic processes with nuisance pre-change and post-change

parameters. Direct expressions for the APO rules under suitable risk functions

are derived. Results are applied to the 1996–2004 influenza mortality data

published by Centers for Disease Control and Prevention.

Key words and phrases: asymptotically pointwise optimal, Bayes sequential,

change point, epidemic threshold, influenza mortality, optimal stopping, payoff
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1 Introduction

In the modern world, the timely detection of epidemics has been recognized as

an extremely important problem of disease control and biosurveillance.

According to the World Health Organization, influenza epidemics result in

three to five million severe cases and between 250,000 and 500,000 deaths each

year. Between 5% and 15% of the population develop respiratory tract infec-

tions. It is estimated that in the United States, influenza epidemics account for
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a 71-167 million dollars loss in the form of health care costs and lost productiv-

ity. A 274 million dollar budget has been requested for the fiscal year 2005 for

“an integrated biosurveillance initiative” that will include “development of the

national data collection and analysis system for identifying possible bioterrorist

incidents and other disease outbreaks.”

This article concentrates on statistical methods for the detection of epi-

demics. In the current practice, epidemics are detected and reported when

mortality exceeds the epidemic threshold. Recent results (e.g.,[3], [12], [17])

show the possibility of epidemics detection at early stages, even before the epi-

demic threshold is exceeded. The main tool in this methodology is detection of

“unusual trends” such as unusually high rate of new diagnoses, fatalities, sold

medicines, or doctors’ visits. In each case, beginning of an unusual trend marks

a switch from a “control state” to an “epidemic state”. Therefore, a begin-

ning of an epidemic trend is a change point whose timely detection will predict

occurrence of a new epidemic.

An important feature of this analysis is availability of rich prior information.

Besides the data obtained by disease surveillance, there are various factors,

easily observed, that influence occurrence of epidemics. For instance, one can

relate the beginning of pre-epidemic trends to weather conditions, pollution,

pollen, ozone, and other factors ([14], [22]). In particular, rapidly changing

weather contributes to the possibility of a pre-epidemic trend.

Thus, a realistic prior distribution exists for the change-point parameter,

and the statistical problem of early detection of epidemics can now be stated as

a Bayes sequential change-point detection problem.

Exact Bayes solution to this problem (Bayes stopping time) has been found

for the cases of geometric prior ([21]), the least favorable prior ([18]), and a

prior driven by a stationary Markov chain ([2]), assuming independent obser-

vations. Each algorithm and especially its practical implementation put heavy

constraints on the structure of the prior distribution of a change point. As a re-

sult, this does not allow to utilize all the available prior information for accurate

detection of epidemics.

Alternatively, asymptotically pointwise optimal (APO) rules can be used for

the detection of epidemics, as proposed in [3]. This extends the concept of an

APO stopping rule in classical sequential analysis ([6], [7]) to the problems of

change-point detection.

In this paper, the observed data (number of cases, deaths, sold medicines,

etc.) are assumed to come from a stationary or nonstationary time series, which

is standard in epidemic modelling. Nuisance parameters before and after the

change point are introduced allowing the model to recalibrate itself sequentially

as the new data becomes available. Under these general conditions and rather

mild assumptions about the prior distribution, we derive closed-form expressions

for the APO stopping rule. Thus, implementation of the obtained rule for

epidemic detection is straightforward. They combine observed data with the
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prior information and and achieve a controlled balance between the mean delay

and the rate of false alarms.

2 Exact Bayes and Bayes-like stopping rules for

change-point detection

Assume a rather general model with a change point. Let X1, X2, . . . be an

observed sequence of random variables or random vectors, possibly dependent,

following the distribution law F for j ≤ ν and distribution G(x) for j > ν

for some ν ≥ 0, with ν being the unknown change point, the parameter of

interest. Denote X
(k:n) = (Xk, . . . , Xn), X

(n) = X
(1:n), assume that for each

n, measures F (X(n)) and G(X(n)) are absolutely continuous with respect to a

reference measure µn, and consider joint densities f(n)(X
(n)) and g(n)(X

(n)),

marginal densities fk(Xk) and gk(Xk), conditional densities fn|k(X(n)|X(k))

and gn|k(X(n)|X(k)), etc. In unambiguous cases, subscripts will typically be

omitted. Also, let

Lk(X(n) = f(X(k))g(X(k+1:n)|X(k))

be the joint density of X
(n) under the condition ν = k.

Further, suppose that the distributions F come from a family F , indexed by

an unknown (nuisance) parameter θ, and distributions G come from a family G

with a nuisance parameter η. This will ensure a wide range of applications where

it is impractical to assume completely known distributions. Often a pre-change

(say, “in-control”) distribution is known, but an after-change (“out-of-control”)

distribution is not. Families F and G may actually coincide, in which case only

its parameter changes from θ to η at the time ν.

One can think of two stochastic sequences

{Un} ∼ Fθ ∈ F and {Vn} ∼ Gη ∈ G,

and let

Xn =

{

Un for n ≤ ν

Vn for n > ν.

For problems of epidemic detection, the process {Xn} may represent the number

of diagnoses, the number or percentage of deaths, the number of sold medicines,

or the number of doctor’s visits.

The objective is to detect and report a change in distribution “as soon as

possible” after it occurs, at the same time not allowing a high frequency of false

alarms. A decision-theoretic approach to this sequential detection problem will

therefore involve a risk function that balances the mean delay of a stopping

time and the probability of a false alarm. Generalization to sequences with

more than two change points, with the objective to detect all of them is natu-

ral and straightforward ([9],[13]). One possible solution is to sample the data
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sequentially and to detect one change point at a time by means of a sequential

detection mechanism ([4]).

Next, the random nature of change points and available rich prior informa-

tion about their possible occurrence justify a Bayesian model where the unknown

parameter of interest ν has a rather objective prior distribution

πt = P {ν = t} .

In epidemiology, a rather realistic prior distribution for the change-point param-

eter ν can be constructed based on weather, ozone conditions, pollution level,

etc.

The nuisance parameters θ and η will have their own prior distributions

πθ(θ) and πη(η).

2.1 Shiryaev’s Bayes rule

Shiryaev ([20], [21]) formulated and solved the Bayesian change-point detection

problem for the case of a geometric prior distribution (with a known and fixed

parameter), i.i.d. observations before and after the change point, and the risk

function

R1(T ) = λE(T − ν)+ + P {T < ν} (1)

The Bayes stopping rule T in this case can be computed as

T = inf{n : Πn > π∗}, (2)

where

Πn = P

{

ν ≤ n|X(n)
}

=

∑

k≤n πkf(X1) · · · f(Xk)g(Xk+1) · · · g(Xn)
∑

k πkf(X1) · · · f(Xk)g(Xk+1) · · · g(Xn)

is the posterior probability that a change point has occurred by the time n, and

the threshold π∗ is computed from the payoff function

s(π) = − inf
{all stopping rules T}

R1(T |π0 = π). (3)

This prior implies a constant hazard rate function of ν. That is, at any time

moment, there is a constant probability p that a change occurs, given that it

has not occurred earlier. The Bayes rule in this case signals a change point

when the posterior probability of its occurrence exceeds a certain value. Taking

a limit as p → 0 leads to a famous Shiryaev-Roberts procedure ([19]). The

latter is asymptotically Bayes risk efficient ([16]), also under the geometric prior

distribution.
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2.2 Cusum algorithm as the Bayes rule

Ritov ([18]) proved decision-theoretic optimality and Bayesian properties of the

cusum scheme. Under the risk function

R2(T, ν) = C1P ν {T < ν} + C2Eν(T − ν)+ − C3Eν min {T, ν} (4)

and a special prior distribution

P

{

ν = n | ν ≥ n, X(n)
}

= p

(

1 −
f

g
(Xn)e−Wn−1

)+

,

the cusum stopping rule

T (h) = inf {n : Wn ≥ h} ; Wn = max
k∈[0;n)

log
L(X1, . . . , Xn | ν = k)

L(X1, . . . , Xn | ν = ∞)
,

is Bayes.

2.3 Hierarchical Bayes analysis

Usually the available prior information yields to a prior distribution different

from the ones mentioned above. Results of Shiryaev and Ritov about Bayes

stopping rules were generalized in [2] to allow for a wider class of prior dis-

tributions. Values of the prior discrete hazard function of a change point

φn = P {ν = n + 1 | ν > n} were assumed to follow a homogeneous Markov

chain. Clearly, this included geometric priors as a special case, but also allowed

the prior probabilities to depend on another stochastic process. This model can

be used in situations when occurrence of a change point is driven by another

time series or a random phenomenon. The latter is observed. By the time t,

one observes the states aj , j ≤ t of a Markov chain and computes φj for j ≤ t.

Then, the posterior probability (for the case of independent observations) that

a change has occurred by the time t can be computed as

Πt = P

{

ν ≤ t|X(t), φ0, . . . , φt

}

=

∑

k≤t πkρ(Xk+1) · · · ρ(Xt)
∑

k<t πkρ(Xk+1) · · · ρ(Xt) + 1 −
∑

k<t πk
,

where ρ = g/f and πk = φ0 · · ·φk−1(1 − φk). Derivation of the Bayes stopping

rule is essentially based on the theory of optimal stopping ([21]), and likewise,

it requires computation of the payoff function (3). Finally, it also has the form

(2), under the risk function (1) or (4).

2.4 Sequence of Bayes tests

The previous three subsections outlined the situations when the exact Bayes

stopping rule for the change-point detection can be constructed. Each case
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places certain tight conditions on the prior distribution. This is a major disad-

vantage because in many applications, especially including epidemiology, rich

prior information is available, and it is desirable to utilize it for timely and

accurate detection of change points (epidemic trends).

The last case allows a wide class of priors, but the construction of the Bayes

stopping rule is based on the payoff function. The latter can be computed

numerically, through a sequence of iterations, by solving a certain fixed-point

functional equation. Carrying out this computation seems feasible for fairly

simple types of prior distributions.

In order to overcome these difficulties and to allow richer and more practical

classes of prior distributions, especially of a nonstationary nature, we extended

our search to “Bayes-like” stopping rules. The following sequential scheme,

generated by a sequence of Bayes tests, is proposed mainly in order to extend

the class of considered prior distributions and allow richer and more complicated

models.

We begin by noticing that the popular cusum stopping rule was derived

from Wald’s sequential probability ratio test ([15]), that is, from a sequence of

likelihood ratio tests. Occurrence of a change point is reported as soon as the

no-change null hypothesis is rejected.

In presence of a prior distribution of ν, we repeat this derivation replacing

the likelihood ratio tests by Bayes tests. For n = 1, 2, . . ., we test the null

hypothesis Ho : ν > n that a change point has not occurred yet against the

alternative hypothesis H1 : ν ≤ n that a change has already occurred by the time

n. For a chosen significance level α, the Bayes test rejects the null hypothesis if

Πn > 1 − α. Thus, we define a stopping rule

T (α) = inf
{

n | Ho is rejected based on X
(n)
}

= inf {n | Πn > 1 − α} .

Bayes stopping rules in subsections 1-3 have the form T (α) for some α ([2],

Theorem 1). However, no constructive method is available to relate α with

risk functions (1) and (4), namely, with coefficients λ and C1,2, besides Monte

Carlo simulations. Thus, computing T (α) does not yet achieve an optimal

balance between the mean delay and the mean time between false alarms. It only

explains, intuitively, why optimal change-point detection rules report occurrence

of a change point when a high value of Πn is observed.

2.5 Asymptotically pointwise optimal rules for dependent

variables

A viable alternative to Bayesian procedures are asymptotically pointwise opti-

mal (APO) stopping rules. Unlike the Bayes stopping rule, it has a closed form

expression that can be computed for virtually any arbitrary prior distribution.

Bickel and Yahav ([6], [7]) define an APO rule T = Tc for a loss L(δ, θ))
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function and a risk

E {L(δ, θ) + cT} (5)

as a stopping rule satisfying the inequality

lim sup
c↓0

EXL(δ(T ; X1, . . . , XT ), θ) + cT

EXL(δ(U ; X1, . . . , XU ), θ) + cU
≤ 1 (6)

for any stopping rule U , where the subscript X means that the expectations are

taken with respect to the posterior distribution of ν, given all the observations

Xj until the stopping time T or U , respectively. Clearly, the Bayes stopping

rule is APO, but there are other APO rules that almost reach the minimum

posterior risk for small values of λ.

Bickel and Yahav also prove that the stopping rule

T̃ = min

{

n | n−1
EX {L(δ, θ) + cn} ≤

c

β

}

(7)

is APO if

nβ
EXL(δ(n; X1, . . . , Xn), θ) (8)

converges to a positive limit a.s., as n → ∞, for some β > 0.

Risk functions of the form (5), with a linear cost cT are standard in se-

quential analysis. However, they are inappropriate in sequential change-point

problems. Indeed, there should be no penalty for collecting observations (and

not terminating the process) before a change point occurs. After the change

point, a price is to be paid for each observation collected. Thus, the cost term

is replaced by the mean delay E(T − ν)+, and risk functions (1) and (4) are

justified. The role of the loss function in (5) is played by the probability of a

false alarm.

However, (8) is not satisfied by risk functions (1) and (4). Moreover, it is

desirable to find an optimal balance between the mean delay and the logarithm

of the probability of a false alarms. This is motivated by an asymptotically

linear relation between the mean delay and the logarithm of the mean time

between false alarms for cusum-type schemes ([5], sect. 5.2.1, [1]).

Therefore, we consider a different risk function

R(T ) = λE(T − ν)+ − log−1
P {T < ν} (9)

that is also an increasing function of a mean delay and the probability of a

false alarm. Similarly to (6), a stopping rule T will be called asymptotically

pointwise optimal for change-point detection if

lim sup
λ↓0

λEX(T − ν)+ − log−1
P X {T < ν}

λEX(U − ν)+ − log−1
P X {U < ν}

≤ 1 (10)

a.s. for any stopping rule U .
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Theorems 1 and 2 establish a class of APO rules for the sequential change-

point detection under very mild conditions about the prior distribution of ν.

These APO rules and the conditions on the prior distribution π(ν) are stated

in terms of the prior survival function of a change point

S(t) =
∞
∑

j=t+1

πj = P
π(ν > t)

and the posterior survival function of a change point

SX(t) = 1 − Πt = P
π(ν > t | X

(t)). (11)

Introducing the likelihood ratios

ρ1 =
g(X1)

f(X1)
, ρn+1 =

g(Xn+1|X
(n))

f(Xn+1|X
(n))

,

we have

SX(t) =

∑

k>t πkf(X(t))
∑

k πkf(X(k))g(X(k+1:t)|X(k))
=

S(t)
∑

k≤t πkρk+1 · · · ρt + S(t)
(12)

The role of the posterior expected loss term in (7) is now played by

rt = − log−1 SX(t) = log−1

(

1 +

∑

k≤t πkρk+1 · · · ρt + S(t)

S(t)

)

. (13)

The next Theorem establishes asymptotics of rt for large t.

Theorem 1 Suppose that the strong law of large numbers holds for log-likelihood

ratios ρk,

t−1
t
∑

k=1

log ρk → K > 0, as t → ∞, (14)

with G-probability one. Then there exists an a.s. limit
(i) lim

t→∞
(trt) = 1/K if t−1| log S(t)| → 0 as t → ∞

(ii) lim
t→∞

(trt) = 1/ {K + L} if t−1| log S(t)| → L > 0 as t → ∞

(iii) lim
t→∞

(tβrt) = 1/L if t−β| log S(t)| → L > 0 as t → ∞

for some β > 1.

Proof : From (13),

1

rt
= − log(1−Πt) = − log S(t) + log

∞
∑

k=0

πkρ(Xk+1) · · · ρ(Xt) = At + Bt (say),

(15)
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where ρ(Xk+1 · · · ρ(Xt) = 1 if k ≥ t. Consider the terms At and Bt. In cases

(i) and (ii), At/t → L ≥ 0, as t → ∞, and in case (iii), At/t → ∞ and

At/tβ → L > 0. Also, for any t,

Bt ≤ log

(

∞
∑

k=0

πk

)

max
0≤k≤t

ρ(Xk+1) · · · ρ(Xt) = max
0≤k≤t

t
∑

i=k+1

log ρi = Wt,

where Wt is the cusum process based on log-likelihood ratios. There exists an

a.s. limit (under G)

lim
t→∞

t−1Wt = lim
t→∞

t−1
t
∑

k=1

log ρk = K,

because

Wt = max
0≤k≤t

t
∑

i=k+1

log ρi =

t
∑

i=1

log ρi − min
0≤k≤t

k
∑

i=1

log ρi,

where
∑t

1 log ρi ∼ Kt and min[0,t]

∑k
1 log ρi = O(1), as t → ∞. The latter is

uniformly bounded for all t because
∑k

1 log ρi → ∞, k → ∞, G-a.s., in view of

(14). Thus, we have the inequality

lim sup
t→∞

Bt

t
≤ K. (16)

Also,

Bt ≥ log (πmρ(Xm+1) · · · ρ(Xt)) = Cm + Dt,

where Cm = log πm−
∑m

1 log ρ(Xk), Dt =
∑t

1 log ρ(Xk), and m = min {k | πk > 0}

is the essential infimum of ν under π(ν). Since Cm/t → 0 and Dt/t → K, as

t → ∞, we have

lim inf
t→∞

Bt

t
≥ K. (17)

From (15), (16) and (17), we have, as t → ∞,

trt =
1

At/t + Bt/t
→

1

− limt(At/t) + K
,

which leads to statements (i) and (ii). In case (iii),

tβrt =
1

At/tβ + Bt/tβ
→

1

L + 0
,

which proves statement (iii). �

Theorem 1 establishes a convergence property of the posterior expected loss

that is similar to (8).

We notice that conditions (i) − (iii) of Theorem 1 include many common

distributions of ν, however, ν is not allowed to be a bounded variable. The case
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of bounded ν is trivial because only stopping rules T̃ that equal ess sup(ν) with

probability tending to 1 can be APO in this case.

In the classical situation of F -i.i.d. variables before the change point and G-

i.i.d. variables after it, condition (14) holds with K being the Kullback-Leibler

information, K = K(G, F ). Certainly, (14) is true in a much wider range

of processes: Lp-mixingales, Lp-NED (near-epoch-dependent in L − p norm)

sequences, stationary invertible ARMA ([8], [10]).

Theorem 2 Under conditions (i) or (ii) of Theorem 1, the stopping rule

T̃ = inf
{

n | − n log SX(n) ≥ λ−1
}

(18)

is asymptotically pointwise optimal under the risk function (9). Under condition

(iii) of Theorem 1, the stopping rule

T̃ = inf
{

n | − n log SX(n) ≥ βλ−1
}

(19)

is asymptotically pointwise optimal under the risk function (9).

Proof : In order to prove (10), we compare the posterior risk of T̃ with that of

an arbitrary stopping rule U . Without loss of generality, we can consider only

such stopping rules U = U(λ) that tend to ∞ a.s., as λ ↓ 0.

Indeed, if U 6→ ∞ with a positive probability, then with the same probability

SX(U) = P

{

ν > U | X
(U)
}

6→ 0 which precludes the posterior risk λEX(U −

ν)+ − log−1 SX(U) from tending to 0.

At the same time, there exist stopping rules that have a posterior risk tending

to 0 a.s. A trivial example is U ≡ [λ−1/2] for any X1, X2, . . .. For this rule,

λEX(U−ν)+ ≤ λ[λ−1/2] → 0, as λ → 0, and SX(U) → 0 according to Theorem

1. Hence, the posterior risk of this stopping rule converges to 0 a.s.

Thus, we consider only the stopping rules U that tend to infinity a.s., as

λ ↓ 0, and satisfy SX(U) → 0. Also, T̃ → ∞ a.s. For these rules, there

exists a positive limit limλ↓0 UβrU = V , given by Theorem 1, where we set

β = 1 in cases (i) and (ii). Since (T̃ − 1) also tends to ∞ as λ ↓ 0, we have

UβrU ∼ (T̃ − 1)βrT̃−1.

The rest of the proof is rather similar to Theorem 5.4.1 of [11]. According

to (18) and (19), rT̃ = −1/ logSX(T̃ ) ≤ λT̃/β, but rT̃−1 > λ(T̃ − 1)/β. Hence,

as λ ↓ 0,

H(T̃ , U) =
λEX (T̃ − ν)+ − log−1 SX(T̃ )

λEX(U − ν)+ − log−1 SX(U)
≤

λT̃ + λT̃/β

λEX(U − ν)+ + rU

∼
λT̃ (1 + 1/β)

λU +
(

T̃−1
U

)β

rT̃−1

<
λT̃ (1 + 1/β)

λU + λ(T̃ /U)β(T̃ − 1)/β
(20)

∼
1 + 1/β

(U/T ) + (T̃ /U)β/β
≤ sup

y>0

1 + 1/β

y + y−β/β
= 1.
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Hence lim supλ↓0 H(T̃ , U) ≤ 1, and T̃ is APO.

In (20), we used the equality

lim
λ↓0

EX(U − ν)+

U
= 1 a.s. (21)

It holds because

EX(U − ν)+

U
= EX

(

1 −
ν

U

)

Iν≤U = 1 − SX(U) −
1

U
EXνIν≤U .

As explained above, without loss of generality we consider only such stopping

rules U that satisfy SX(U) → 0, as λ ↓ 0. Also,

0 ≤ lim sup
λ↓0

1

U
EXνIν≤U ≤ lim

U→∞

1

U

U
∑

t=0

SX(t),

where the right-hand side is the Cesaro limit of SX(t), t → ∞, which equals

limt SX(t) = 0. This proves (21). �

We notice that contrary to the computation of Bayes stopping rules, the

implementation of the APO scheme (18) is fairly straightforward. It is based on

the posterior survival function of ν only, which can be computed directly, from

(11) or (12).

2.6 Introducing nuisance parameters

The APO stopping rules proposed by Theorem 2 can only be computed in the

case of completely known pre- and post-change distributions F and G. Here,

we assume that only families of distributions F and G are known, indexed by

nuisance parameters θ ∈ Θ and η ∈ H , so that F = Fθ ∈ F and G = Gη ∈ G.

Parameters θ and η are considered unknown, having prior distributions πθ

and πη independently of the change point ν. Asymptotically pointwise optimal

stopping rules for change-point detection will now be derived for this case.

Let

f∗(X(t)) =

∫

fθ(X
(t))dπθ(θ), f∗(Xt+1|X

(t)) =
f∗(X(t+1))

f∗(X(t))
,

g∗(X(t)) =

∫

gθ(X
(t))dπθ(θ), g∗(Xt+1|X

(t)) =
g∗(X(t+1))

g∗(X(t))

be the marginal and conditional densities before and after the change point,

respectively. Then the problem becomes to detect a change from the distribution

F ∗ to the distribution G∗, and we define the likelihood ratios

ρ∗1 =
g∗(X1)

f∗(X1)
, ρ∗t+1 =

g∗(Xt+1|X
(t))

f∗(Xt+1|X
(t))

.
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Theorem 3 Suppose that the strong law of large numbers holds for the loglike-

lihood ratios ρ∗
t , i.e.,

t−1 log ρ∗t → K > 0, as t → ∞, (22)

Gη-a.s. for all η ∈ H. Then, for change-point detection in presence of nuisance

parameters, the stopping rules

(1) the stopping rule T̃ ∗ = inf
{

t | − t log S∗
X(t) ≥ λ−1

}

is APO under con-

ditions (i) or (ii) of Theorem 1;

(2) the stopping rule T̃ ∗ = inf
{

t | − t log S∗
X(t) ≥ βλ−1

}

is APO under con-

dition (iii) of Theorem 1,

where S∗
X(t) = P

{

ν > t|X(t)
}

is the marginal (parameter-free) posterior sur-

vival function of the change point.

Proof : It suffices to notice that distributions F ∗ and G∗ satisfy conditions of

the previous subsection. The posterior survival function S∗
X(t) is computed as

S∗
X(t) =

∑

k>t πkL(X(t)|ν = k)
∑

k πkL(X(t)|ν = k)

=

∑

k>t πk

∫ ∫

L(X(t)|ν = k, θ, η)dπθ(θ)dπη(η)
∑

k πk

∫ ∫

L(X(t)|ν = k, θ, η)dπθ(θ)dπη(η)

=

∑

k>t πkf∗(X(t))
∑

k πkf∗(X(k))g∗(X(t)|X(k)) +
∑

k>t πkf∗(X(t))

=
S(t)

∑

k≤t πkρ∗k + S(t)

This coincides with (12) with ρk replaced by ρ∗
k. After this, the proof goes along

the lines of Theorems 1 and 2. �

3 Application - detecting the beginning of an

epidemic trend

Influenza epidemics are declared when mortality (the percentage of deaths at-

tributed to influenza-like illnesses) exceeds the epidemic threshold (Figure 1).

However, a change-point may be detected a few weeks before the threshold is

exceeded, signaling the beginning of an epidemic trend and allowing to predict

epidemics.

In this study, the observed process Xt represents the percentage of patients

tested positive for influenza-like illnesses, computed weekly (Figure 2). The

dotted curve represents the general seasonal trend, estimated from the historical

data. Clear deviations from the general trend are seen during 1999-2000 and

12



Figure 1: Influenza mortality and epidemic threshold
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Figure 2: Percentage of patients tested positive for influenza-like illnesses

2003-2004 epidemic seasons. But, the goal is to detect such deviations as soon

as possible.

Analysis of detrended series (residuals) shows significant autocorrelation (be-

tween 1997 and 2004, the first sample autocorrelation coefficient is r1 = 0.958).

Thus, we assume that before a change point, or during an epidemic season

without an epidemic, the detrended observed process is weakly stationary, and

estimate its autocorrelation coefficients from data. A fully Bayesian approach

is certainly possible, with prior distributions on autocorrelation coefficients, as

in Subsection 2.6.

Next, one can relate the beginning of pre-epidemic trends to weather con-

ditions, pollution, pollen, ozone, and other factors ([14], [22]). In particular,

rapidly changing whether contributes to the possibility of a pre-epidemic trend.

We model the prior distribution of the change-point letting its hazard rate to

be inversely proportional to the daily standard deviation of temperatures,

φn =
πn

1 −
∑n−1

1 πk

= P {ν = n | ν ≥ n} ∝
√

V ar(Temperature).

13



An APO stopping rule is then computed according to Theorem 1, detecting

epidemic trends in 1999 and 2003 before the epidemic threshold for influenza

mortality was crossed.
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